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Abstract
This work presents an in-depth investigation of the influence of the individual laser sintering parameters on density, mechanical,
and dimensional properties of carbon fiber–reinforced PA12 parts manufactured by selective laser sintering (SLS) . A space-
filling design of experiments method was used to plan the experiments and SLS trials were conducted to manufacture test
samples that were characterized in terms of dimensional accuracy, density, and mechanical properties. Gaussian process–
supervised learning was used to model the interaction between laser sintering parameters and quality properties. Stochastic
optimization via evolutionary algorithm was employed to obtain trade-off solutions for several multi-objective optimization
tasks. The Gaussian process presented excellent model quality for the majority of response variables evaluated. Laser sintering
parameters had a significant influence on physical andmechanical properties, exhibiting complex and non-linear behavior. Multi-
objective optimization showed a wide range of optimized laser sintering parameters available, depending on the trade-off
objective desired.
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1 Introduction

Selective laser sintering (SLS) is a powder bed fusion additive
manufacturing (AM) process able to fabricate three-
dimensional (3D) objects layer-by-layer according to their
CADmodels. Powder consolidation is obtained by selectively
fusing or melting the layer of loose powder using the thermal
energy of one or more lasers [1, 2]. Compared to other AM
techniques, SLS does not require any tooling or a support
structure, being able to rapidly produce parts with highly con-
trollable intricate internal and external structures. The com-
plex laser–material interaction and consolidation mechanism
occurring in SLS limit the range of materials available to date
[3, 4]. By far, polyamide 12 (PA12) is the most commercially
used and scientifically researched material due to its easier
processability by SLS [5], accounting for the majority of the

SLS market and providing the most relevant information for
the current market.

SLS parts made with composite materials such as poly-
mer matrix with inorganic fillers are being increasingly
studied by the research community [6]. The primary pur-
pose of this approach is to improve the mechanical prop-
erties of the material, which cannot be achieved by using
a single material in its composition [7]. One of the mate-
rials recently receiving attention for SLS of end-user parts
is carbon fiber–reinforced polyamide (PA12-CF). The
powder form of PA12-CF is composed of PA12 spherical
particles mixed with high aspect ratio carbon short fibers.
The fibers receive a chemical treatment to improve the
adhesion between the fibers and the polymeric matrix.
Yan et al. [8] prepared carbon fibers by surface modifica-
tion to improve interface adhesion with PA12 and further
mixing CF with PA12 by a dissolution-precipitation meth-
od. Mechanical properties were greatly enhanced by the
preparation method when compared to pure PA12. Bai
et al. [9] showed that the melting pool generated during
SLS of carbon nanotubes and PA12 is wider and deeper
than pure PA12. More recently, carbon fiber surface mod-
ification via HNO3 treatment was performed to improve
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adhesion with PA12 via direct mixing [10]. Improved
mechanical properties were obtained after surface modifi-
cation of CFs but only when treated in a nitrogen atmo-
sphere. The porosity of mechanically mixed PA12-CF
samples manufactured in different building directions
was studied employing computed tomography [11].
Highly porous structures were observed, concentrated be-
tween the layers manufactured, leading to anisotropic me-
chanical properties. The fracture mechanism of PA12-CF
material processed by SLS was recently studied [12].
Crack growth was found to initiate at the interface be-
tween carbon fiber and PA12. Carbon nanotubes have
been added to PA12 to improve mechanical behavior,
reporting a significant increase in mechanical properties
when compared to pure PA12 [13, 14]. Espera et. al.
mechanically mixed carbon black with PA12, improving
mechanical and electrical properties with an optimal filler
content of 1.5% [15]. Carbon black PA12 was prepared
via a two-step approach to produce SLS parts with im-
proved electrical properties [16]. Zhu et al. [17] proposed
a novel method to prepare carbon-fiber-PA12-epoxy ter-
nary composites. The authors infiltrated the green porous
PA12-CF structure with thermosetting epoxy resin, which
was subsequently cured to obtain the ternary composite.
The novel method reported yielded a tensile strength of
101 MPa, a significant improvement compared to pure
PA12 and also to other PA12-CF composites processed
by SLS.

As detailed in the literature review, most of the research
carried out so far in laser sintering of PA12-CF materials was
focused on material aspects, without taking into consideration
the influence of the individual laser sintering parameters on
quality properties. The SLS process parameters are related to
the energy delivered to the powder bed and influence impor-
tant quality factors such as the dimensional, surface, and me-
chanical properties of SLS parts. Typical process parameters
include laser power, laser speed, scan line spacing, layer thick-
ness, pre-heating temperature, and part orientation. To the
authors’ knowledge, no research has been conducted to inves-
tigate the effect of individual laser sintering parameters on the
quality properties of SLS PA12-CF parts. Therefore, the main
contribution of this research study is to investigate and opti-
mize the influence of the individual laser sintering parameters
on critical quality criteria such as surface properties, dimen-
sional accuracy, density, and mechanical properties. To sup-
port the study, a space-filling design of experiments (DOE) is
applied to conduct the experimental trials, and the influence of
the individual laser sintering parameters on critical quality
criteria such as dimensional accuracy, density, andmechanical
properties is modeled employing Gaussian process (GP)–su-
pervised learning. Stochastic optimization via evolutionary
algorithm (EA) is applied to perform multi-objective optimi-
zation tasks for different criteria.

2 Materials and methods

2.1 Materials

The material studied was carbon fiber–reinforced PA12
(PA12-CF), which is a commercially available material (com-
mercially known as CarbonMide, from EOS manufacturer)
for laser sintering applications [18], composed by PA12 and
anthracite black carbon fiber PA12-CF powder. SEM micro-
graphs of the described powder at × 200 and × 1000 magni-
fication are depicted in Fig. 1. As observed from the micro-
graphs, carbon fibers are uniformly dispersed along with the
“potato-shaped” PA12 polymer particles.

2.2 SLS processing and design of experiments

AnEOS P396 laser sintering machine was used to perform the
SLS experiments, equipped with a 70 W continuous-wave
Gaussian CO2 laser (wavelength 10.6 μm) and a laser spot
diameter of 0.5 mm. Standard dumbbell-shaped type I (ASTM
Standard D638-02a, 2002 [19] ) and rectangular (ASTM
Standard D790-02,2002 [20]) samples were manufactured.
All samples were positioned in the building platform X-direc-
tion (the same direction as the recoater blade moving direc-
tion) and using an alternate x–y scanning pattern. The parts
were placed as close as possible to the center of the building
platform to minimize the effects of non-uniform powder tem-
peratures on the building platform. In order to evaluate the
influence of the individual laser sintering parameters, laser
power, laser scan speed, and scan line spacing were varied
using a Sobol space-filling DOE methodology, which has
the advantage of best design space coverage and uniformity
[21]. Twenty-four laser parameter sets were defined, with la-
ser power varying from 30 to 45 W, laser scan speed from
2000 to 5000mm/s, and scan line spacing from 0.2 to 0.6 mm.
The layer thickness was fixed at 150 μm. Figure 2 shows the
design space covered by the Sobol space DOE. Table 1 shows
the experimental design matrix. The pre-heating temperature
was kept at 178 °C during all laser sintering process. For each
parameter combination, 5 dumbbell and 5 rectangular samples
were produced, giving a total of 240 samples evaluated.

2.3 Response surface modeling—Gaussian process–
supervised learning

Response surface modeling (RSM) is adopted to model the
influence of the laser sintering variables on response variables.
The goal is to use the results from the DOE run in order to
create an empirical model of the response variables over the
design space. In a more general way, this approach concerns
supervised learning, which consists of learning the mapping
between input and output variables from empirical data (train-
ing data). RSM using supervised learning is very useful to
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predict the behavior of response variables and provide a set of
parameters yielding optimal response, which are the main ob-
jectives of this study.

Traditional RSM methods include the least square method
and polynomial fit (linear, quadratic, cubic). Such methods
make assumptions about the characteristics of the underlying
function f(x). For instance, if the behavior of the output at
given inputs is linear, it is reasonable to assume a linear re-
gression model. The main drawback of such approaches is the
limited flexibility involved, as the prior assumption of the
underlying function can give poor prediction results if the
relationship between input and output cannot be reasonably
approximated by the given function. Another approach is to
give a prior probability to every possible function considered
more likely. This function probability is precisely what
Gaussian process (GP) aims. Unlike polynomial methods,
GP does not claim specific functions relating to the data, being

a less parametric tool [22]. Given a training dataset (collection
of inputs and outputs), a GP will infer the most likely func-
tions that pass through the observed data. This method uses no
descriptive model based on physical processes, being deduced
statistically from measured data only [21]. GP can be de-
scribed as a distribution over functions and inference taking
place directly in the space of functions.

More specifically, a GP is a collection of random variables
which is described by its mean function m(x) and covariance
function k(x, x'). A GP is defined by equation 1.

m xð Þ ¼ E f xð Þ½ �
k x; x

0
� �

¼ E f xð Þ−m xð Þð Þ
�
f x

0
� �

−m x
0

� �h i
f xð Þ∼GP m xð Þ; k x; x

0
� �� � ð1Þ

A GP is a probability distribution over possible functions.
Random variables represent the value of function f(x) at

Fig. 1 Powder images from
scanning electron microscope
(SEM) depicting PA12-CF

Fig. 2 Laser sintering parameters
design space covered by Sobol
space-filling DOE
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location x, while the covariance function (kernel function)
specifies the covariance between pairs of random variables
f(x) and f(x'), which measure the similarity between points
and give important properties of functions such as smoothness
and stationarity. The mean functionm(x) represents the expec-
tation E of f(x).

This work proposes, for the first time, the use of GP to
perform the RSM of the SLS process variables. GP method
is known to achieve a good approximation of response sur-
faces and improved optimization results, being often used in
machine learning tasks. Also, GP gives a good prediction of
variance, which measures the uncertainty of the model. The
squared exponential function was used as the covariance func-
tion, which is known to give smoother models [22]. The
squared exponential covariance function is defined by equa-
tion 2.

k x; x
0

� �
¼ σ2exp −

x−x0� �2
2l2c

 !
ð2Þ

where x and x' are neighboring input values. f(x) and
f(x') are the modeled outputs at the given input values.
The hyperparameter σ is defined as the variance of the

response variable, and lc is defined as the characteristic
length scale of the covariance function. The covariance
function between outputs is described in terms of their
respective inputs. It can be seen that the covariance
function is close to σ2 at variables whose corresponding
inputs are very close, decreasing as the distance be-
tween the inputs increases. The GP modeling for laser
sintering parameters used a Matlab implementation of
GP models publicly available [23].

The following quality response variables were evaluated
and modeled using GP:

& X-direction dimensional accuracy (same direction as the
recoater blade moving direction)

& Y-direction dimensional accuracy (direction perpendicular
to the recoater blade moving direction)

& Z-direction dimensional accuracy (same direction as the
building direction)

& Apparent density
& Average surface roughness (Ra)
& Tensile strength at yield
& Nominal strain at break
& Elastic modulus
& Normalized manufacturing time

Table 1 Experimental design
matrix Experiment_Id Laser power (W) Laser Speed (mm/s) Scan Line Spacing (mm)

1 26 2212 0.44

2 35 4180 0.24

3 39 1929 0.34

4 30 3251 0.54

5 33 1992 0.29

6 42 4010 0.49

7 37 2876 0.59

8 28 4206 0.39

9 29 1751 0.52

10 38 3607 0.32

11 43 3271 0.22

12 34 4398 0.42

13 31 3086 0.37

14 40 4862 0.57

15 36 2211 0.47

16 27 3511 0.27

17 26 2149 0.31

18 35 4070 0.51

19 40 3438 0.41

20 31 4931 0.21

21 33 2758 0.56

22 42 4625 0.36

23 38 1978 0.26

24 38 3000 0.3
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The model quality for each response variable was evaluat-
ed through plots of prediction and measured data and statisti-
cal quality criteria such as root mean square error (RMSE) to
check the absolute error measure, and the coefficient of deter-
mination R2 to check the portion of the total variance of the
measuring data is described by the model. RMSE and R2 are
given by equations 3 and 4, respectively.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
yi;pred−yi;meas

� �2
n

vuut
ð3Þ

R2 ¼ 1−
∑
n

i¼1
yi;pred−yi;meas

� �2
∑
n

i¼1
yi;meas−ymeas

� �2 ð4Þ

where yi, pred is the modeled output of a response variable at a
given input, yi, meas is the measured value of a response vari-
able at the same input, and ymeas is the average value of all the
measured data of the respective response variable. For both
measures, the leave one out cross-validation (LOOCV) was
applied, i.e., one point of the training data was left out as
validation data, the model was trained, and the error of the
one data point which was not used in the model training was
calculated. The procedure was repeated until each data point
was used once for validation, and the overall validation error
was evaluated in terms of RMSE and R2. Models withR2 ≥ 0.9
were considered excellent and suitable for quantitative predic-
tions; Models with 0.6 < R2 < 0.9 were considered of interme-
diate quality and suitable for qualitative analysis; models with
R2 ≤ 0.6 were considered not reliable. Only models with R2 >
0.6 were considered for further analysis of response functions,
as a qualitative analysis can be performed, and useful infor-
mation can be derived even from models with intermediate
quality. Only models withR2 ≥ 0.9 were considered for further
optimization tasks.

2.4 Evolutionary algorithm stochastic optimization

The results derived from GP modeling were further used to
perform optimization tasks with distinct objectives.
Evolutionary algorithm (EA) stochastic optimization was
employed to perform the optimization tasks. EA was chosen
as the optimization method as it performs well under a wide
range of higher dimensional problems and is robust against
noisy evaluation functions [24]. EA aims at simulating the
evolution of a population through successive generations of
better performing individuals. By applyingmutation operators
on previous generations, a new generation is created, evaluat-
ed for fitness, and selected. The steps are repeated until the
termination criteria are achieved [24]. The main steps in EA
optimization are as follow:

1. Initialization: the first population of individuals is ran-
domly created.

2. Mutation: a mutant individual is created for each individ-
ual in the population.

3. Cross-over: the mutant individual is combined with its
parent to create a trial individual.

4. Evaluation: the fitness of the trial individual is evaluated
5. Selection: the best between trial and parent individual is

selected based on the fitness function and survive to the
next generation.

6. Repetition: steps 2–5 are repeated until the desired num-
ber of iterations is achieved.

Multi-criteria optimization was employed to perform the
optimization tasks. Unlike single criteria optimization, where
only one objective function is to be minimized or maximized,
multi-criteria optimization relies on optimization of two or
more objective functions. The results are not a single optimum
of the functions. Instead, due to conflicting objectives, the
results of a multi-criteria optimization are solution sets
representing a compromise (trade-off) between the objectives.
These trade-off solutions are called Pareto solutions.

Although EA is a powerful optimization tool, it has some
drawbacks. The main constraints related to EA and most of
stochastic optimization methods are their slow convergence
towards the optimal solution or solutions and the reproducibil-
ity of the results due to the stochastic nature of these algo-
rithms. Nevertheless, EA is known to perform well in multi-
objective tasks and therefore was chosen as the optimization
technique in this study [24].

Multi-criteria optimization considered mechanical proper-
ties, surface roughness, dimensional accuracy, and
manufacturing time. The optimization was only performed if
the GP model quality achieved was adequate for the specific
response variable. Two objectives were optimized at once,
while the others were kept at a limit (lower or upper hard limit)
to reduce the number of Pareto solutions. Hard lower limit
implies that solutions achieved with values below this thresh-
old are not considered in the optimization, whereas the hard
upper limit means no consideration of solutions with values
above this threshold. The different scenarios considered in the
multi-criteria optimization are summarized in Table 2.

For each optimization criterion, a group of Pareto solutions
was chosen to identify the laser sintering parameters associat-
ed with the specific solution set.

2.5 Mechanical analysis

Force displacement measurements were performed in an
EMIC DL500 mechanical testing machine. Tensile tests were
conducted according to ASTM Standard D638-02a [19].
Dumbbell-shaped tensile specimens type I having dimensions
of 165 × 19 × 3.2 mmwere tested under a displacement rate of
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5 mm/min. For statistical relevance, 5 samples were
manufactured for each parameter set.

2.6 Dimensional, density, and surface roughness
measurements

Dimensional accuracy measurements were conducted accord-
ing to ASTM Standard D5947-11 [25]. Width and thickness
measurements were performed using a micrometer, and a cal-
iper was used to measure the specimen’s length. The resulting
data was used to calculate the volume of the rectangular sam-
ples and to further estimate the apparent density of the samples
by measuring their mass with a precision balance. Surface
roughness was measured with a Mahr Perthen Perthometer
S8P with a cut-off length of 8 mm.

2.7 Manufacturing time calculation

Manufacturing time was evaluated using the calculations per-
formed by the machine software. A reference manufacturing
time was used based on the calculation of the manufacturing
time of one tensile test sample produced with standard laser
sintering parameters (parameter set PA2200 balance accord-
ing to the machine manufacturer manual). The normalized
manufacturing time θ was calculated based on the ratio be-
tween the manufacturing time calculated for the same sample
at the same position but with the parameter set resulting from
the DOE and the reference manufacturing time. The normal-
ized manufacturing time is given by equation 5.

θ ¼ Current Manufacturing time

Reference manufacturing time
ð5Þ

3 Results and discussion

3.1 Model quality

Table 3 presents a summary of RMSE and R2 for each re-
sponse function. X-direction accuracy shows very low values

of R2, and the model is not reliable. The reason for the low
model quality is the small sensitivity of the output variable to
the input variables. Y-direction accuracy has better model
quality (RMSE = 0.0128; R2 = 0.74) and suitable for qualita-
tive assessment. Z-direction accuracy model quality achieved
very good results (RMSE = 0.0172; R2 = 0.93) and can be
used for quantitative assessment.

Density model quality shows a good fit with the experi-
mental data, with an R2 of 0.85, which can be used for qual-
itative predictions. The surface roughness model quality is
very poor (R2 = 0.3) and cannot be considered reliable. The
main reason for low model quality is the high variance of
measurements performed (very noisy results) due to the nature
of laser-sintered samples and also the measurement method
applied, which used profile measurement. Also, there is little
or no influence of the parameters evaluated on surface
roughness.

Mechanical properties reached excellent model quality.
Tensile strength at yield reached low RMSE and high R2 of
0.96. Elastic modulus also achieved a very good correlation
and is suitable for quantitative assessment. Regarding strain,
GP model training for nominal strain at break resulted in good
model quality, with low RMSE and high R2 of 0.92.

Normalizedmanufacturing time is also very well represent-
ed by the GP model, mainly due to the zero variance between
samples processed, as the manufacturing time is calculated
based on the machine’s parameters.

Table 2 Optimization criteria for
PA12-CF response variables Criteria Mechanical properties Surface roughness Manufacturing time Dimensional accuracy

1 Hard lower limit Hard upper limit Minimize Maximize

2 Hard lower limit Minimize Hard upper limit Maximize

3 Maximize Hard upper limit Hard upper limit Maximize

4 Hard lower limit Minimize Minimize Hard lower limit

5 Maximize Minimize Hard upper limit Hard lower limit

6 Maximize Hard upper limit Minimize Hard lower limit

Table 3 GP response functions model quality: RMSE and R2

Response variable RMSE R2

X-direction accuracy (−) 0.000875 0.4789

Y-direction accuracy (−) 0.0128 0.7375

Z-direction accuracy (−) 0.0172 0.9343

Density (g/cm3) 0.01776 0.8472

Surface roughness, Ra (μm) 1.3807 0.2960

Elastic modulus (MPa) 86.7118 0.9645

Tensile strength at yield (MPa) 1.5953 0.9615

Nominal strain at break (%) 0.2212 0.9237

Normalized manufacturing time (−) 8.11E-6 1.0000

2054 Int J Adv Manuf Technol (2020) 110:2049–2066



www.manaraa.com

Overall, GP model training resulted in good model quality.
Considering this is the first-time supervised learning with GP
is applied to polymer composite materials manufactured by
SLS, the results are essential to provide a more in-depth map-
ping of the influence of the main laser sintering variables over
important quality parameters. The model response surfaces
are discussed in the next sections.

3.2 Response surfaces

Response surfaces obtained after GPmodel training for PA12-
CF. A given response variable is a function of the three input
variables: laser power, laser scan speed, scan line spacing. The
multiple input variables result in a hyperplane in a 4-
dimensional space that cannot be graphically presented with
all variables. To be able to represent the response surfaces of
the output variables graphically, three-dimensional intersec-
tion plots of this hyperplane are given, with two input vari-
ables in the x- and y-axis and one output variable in the z-axis.
The remaining input variable is fixed at the given hyperplane.
For each output variable evaluated, two three-dimensional
graphs are presented: response surface as a function of laser
power and laser scan speed at constant scan line spacing;
response surface as a function of scan line spacing and laser
scan speed at constant laser power.

3.2.1 Dimensional accuracy

Figure 3a–b shows the Y- and Z-direction accuracy response
surfaces as a function of laser power and laser scan speed for a
scan line spacing of 0.4 mm. Y-direction accuracy varies sig-
nificantly with laser speed, with a positive gradient in the
direction of higher laser speeds. Laser power influences with
lower relevance Y-direction accuracy. Maximum values are
reached at 3000 mm/s and 35 W laser power. Above 3000
mm/s, a plateau is formed, with high values of Y-direction
accuracy (above 0.99). Lowest values for Y-direction accuracy
were found at a combination of intermediate laser power and
low laser speed. Z-direction accuracy has a smoother variation
in respect to laser power and laser speed, with the lowest
values found at low laser speed and high laser power. Z-direc-
tion accuracy improves in the direction towards high laser
speed and low laser power, reaching a maximum of 0.95 at
25 W laser power and 5000 mm/s laser speed.

Response surfaces for Y- and Z-direction accuracy as a
function of laser speed and scan line spacing for 35 W laser
power are depicted in Fig. 3c–d. Values as low as 0.92 are
found at low scan speed and scan line spacing, steeply increas-
ing in the direction of higher laser speed and scan line spacing.
Both variables have a strong influence on Y-direction accura-
cy. There is a large plateau area where stable Y-direction ac-
curacy values (above 0.99) are observed. At this plateau, scan
line spacing and laser speed have minimal influence. Z-

direction accuracy presents a clear tendency of low values at
low laser speed and low scan line spacing, improving in the
direction towards higher scan line spacing and higher laser
speed.

The sensitivity of Y-accuracy as a function of the evaluated
parameters is shown in Fig. 4a. Laser speed has the most
significant influence over Y-direction accuracy, followed by
scan line spacing and at last laser power with the lowest rele-
vance. The relevance of individual laser sintering parameters
over Z-direction accuracy is shown in Fig. 4b. As expected
from the response surfaces, scan line spacing, and laser speed
play a significant relevance, whereas Z-direction accuracy is
less sensitive to laser power.

During the SLS process, the laser energy delivered to the
powder bed undergoes radiation absorption by the PA12-CF
particles and multiple transmission to neighboring particles.
Both PA12 and CF in the form of anthracite have good ab-
sorption at the CO2 laser wavelength of 10.6 μm [26, 27]. The
addition of carbon fiber in anthracite form to PA12 improves
the thermal conductivity of the powder bed [28], leading to
more heat transferred to the surrounding and underlying
unsintered powder, worsening dimensional accuracy of the
parts. It has been observed by simulation modeling with
PA12 and carbon nanotubes (CNTs) that the laser heat affect-
ed area is wider and deeper when laser sintering PA12-CNT
compared to PA12 [9].

Both accuracy values in Y- and Z-direction show similar
behavior of improved values at lower energy density range.
For instance, lower laser speed increases the exposure time the
powder bed is subjected to the laser, increasing the laser beam
heat-affected area in both Y- and Z-directions, decreasing ac-
curacy as surrounding particles are consolidated together with
the target particles scanned by the laser. Scan line spacing acts
similarly but increasing the number of exposures and the over-
lap degree between laser lines, also contributing to a higher
heat-affected area and worsening dimensional accuracy.
Higher laser power affects the melt pool width and depth
during laser sintering, also impacting heat-affected area and
accuracy.

3.2.2 Density and mechanical properties

The density response surface as a function of laser power and
laser speed at 0.4 mm scan line spacing is depicted in Fig. 5a.
The surface topology shows very low density values of 0.92
g/cm3 at the highest laser speed and lowest laser power, in-
creasing in the direction of lower laser scan speed and higher
laser power. The gradient in laser speed direction is higher
than laser power, indicating higher relevance of laser speed.
The surface shows a local maximum of 1.04 g/cm3 at near
3000 mm/s and 25 W laser power. At constant laser power,
there is a decrease in density for lower values than 3000mm/s.
Another high density of area 1.02 g/cm3 at the highest laser
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speed of 5000 mm/s and highest laser power. Keeping the
gradient in direction to higher laser power and lower laser
speed leads to a decrease in density values.

Density response surface as a function of laser speed and
scan line spacing at 35 W laser power are shown in Fig. 5b.
The map shows the lowest density values of 0.82 g/cm3 locat-
ed at high laser speed and scan line spacing, steeply increasing
in the direction of lower scan line spacing and laser speed. A
maximum large area with density values over 1.03 g/cm3 is

observed at different combinations of low laser speed and high
scan line spacing and high laser speed and low scan line spac-
ing. Further decreasing laser speed and scan line spacing leads
to a reduction in density values.

The response surface of elastic modulus over laser speed
and laser power at 0.4 mm scan line spacing is shown in Fig.
5c. The lowest modulus values of near 3000 MPa are concen-
trated at 4000 mm/s and 25 W laser power and increase in the
direction of both lower laser scan speed and high laser power.

(a) Y-direction accuracy in function of laser speed and laser 

power for 0.4 mm scan line spacing.

(b) Z-direction accuracy in function of laser speed and laser 

power for 0.4 mm scan line spacing.

(c) Y-direction accuracy in function of laser speed and scan line 

spacing for 35 W laser power.

(d) Z-direction accuracy in function of laser speed and scan 

line spacing for 35 W laser power.

Fig. 3 Response surfaces for dimensional accuracy in Y- and Z-direction.
a Y-direction accuracy as a function of laser speed and laser power at
0.4 mm scan line spacing. b Z-direction accuracy as a function of laser
speed and laser power at 0.4 mm scan line spacing. c Y-direction accuracy

as a function of laser speed and scan line spacing at 35 W laser power. d
Z-direction accuracy as a function of laser speed and scan line spacing at
35 W laser power
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Two distinct maximum areas of elastic modulus near
3600 MPa can be observed, one located at an intermediate
speed of 3000 mm/s and lowest laser power and the other
maximum region located at a maximum laser power of
43 W and 4200 mm/s laser speed. Further increase in laser
power combinedwith lower laser speed results in lower elastic
modulus (3300 MPa). Similar behavior is found at the lowest
laser speed evaluated, regardless of the laser power.

Elastic modulus response surface as a function of laser
speed and scan line spacing at 35 W laser power is depicted
in Fig. 5d. The lowest elastic modulus of 2400MPa is found at
high scan line spacing and high laser speed values, steeply
increasing with a gradient in the direction towards lower scan
line spacing and laser speed.Maximum values near 3600MPa
can be found at different sites in the response surface: scan
speed close to 3500 mm/s and scan line spacing near 0.3 mm;
scan speed close to 3000 mm/s and scan line spacing of 0.6
mm; scan speed of 5000 mm/s and scan line spacing of 0.2
mm. The combination of very low laser power and scan line
spacing results in low elastic modulus.

Figure 6a shows the response surface after GP training for
yield strength as a function of laser power and laser speed at
0.4 mm. The surface topology is similar to the elastic proper-
ties modeled, presenting the lowest yield strength of 45 MPa
at 4000 mm/s laser speed and 25 W laser power. At constant
laser power, there is a steep increase in yield strength towards
lower laser speed values, reaching a maximum of 65MPa near
3000 mm/s and decreasing at even lower laser speeds.
Keeping laser speed constant at nearly 4000 mm/s, increasing
laser power improves yield strength significantly, reaching
65 MPa at a maximum laser power of 43 W. At the lower
speed area (below 2500 mm/s), a plateau is formed with
slightly lower yield strength values at 62 MPa.

Yield strength as a function of laser speed and scan line
spacing at 35 W laser power are depicted in Fig. 6b. Lowest
yield strength values (30 MPa) are found at high laser speed
and high scan line spacing, steeply increasing in direction to
lower laser speed and scan line spacing. A stable plateau with
yield strength near 65 MPa is reached in two areas: scan line
spacing between 0.4 and 0.6 mm and laser speed below 3000
mm/s; scan line spacing between 0.2 and 0.3 mm and laser
speed above 4000 mm/s. Further decrease in both laser speed
and scan line spacing reduces yield strength values to 60MPa.

Nominal strain at break modeled surface as a function of
laser power and laser speed at 0.4 mm scan line spacing is
depicted in Fig. 6c. The model predicts very low strain at
break (3.5%) at low laser power and high laser speed. A grad-
ual transition to increased strain at break values in the direc-
tion towards lower laser speed and higher laser power is ob-
served. Maximum values of nominal strain near 5.7% are
observed in two regions in the map: laser speed around 4500
mm/s and laser power at 43 W; laser speed at 2000 mm/s and
laser power at 25 W. Apart from these two regions, there is a
plateau in the high laser power low laser speed area with
slightly lower nominal strain at break values (near 5.3%).

Figure 6d shows the response surface of nominal strain at
break over laser speed and scan line spacing at 35 W laser
power. Surface topology is similar to that found for yield
strength, exhibiting lower values of nominal strain at high
laser speed and scan line spacing and steeply increasing in
direction to lower laser speed and scan line spacing. A plateau
is reached in the areas of low laser speed and high scan line
spacing and high laser speed and low scan line spacing.
Continuous decrease of laser speed below 3000 mm/s and
scan line spacing below 0.35 mm slightly reduces nominal
strain to values near 5%.

Fig. 4 Sensitivity to SLS process parameters for dimensional accuracy: a Y-direction and b Z-direction
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Sensitivity analysis for density and mechanical properties
are depicted in Fig. 7a–d. Scan line spacing is the most
influencing parameter on density (Fig. 7a) and nominal strain
at break (Fig. 7d), followed by laser speed, which has a slight-
ly more substantial relative influence on density compared to
nominal strain at break. Density and nominal strain at break
are less sensible to laser power. Nevertheless, it is a significant
parameter for both response variables. Elastic modulus and

yield strength have very similar behavior, being influenced
more strongly by laser speed, followed by scan line spacing
and, to a less extent, laser power.

SLS is a highly complex process where a combination
of factors influence porosity formation and density.
Material characteristics such as particle shape and distri-
bution play an essential role in the packing density of the
powder bed. PA12 particles have “potato” shape

Fig. 5 Response surfaces for density and elastic modulus. a Density as a
function of laser speed and laser power at 0.4 mm scan line spacing. b
Density as a function of laser speed and scan line spacing at 35 W laser

power. c Elastic modulus as a function of laser speed and laser power at
0.4 mm scan line spacing. d Elastic modulus as a function of laser speed
and scan line spacing at 35 W laser power

2058 Int J Adv Manuf Technol (2020) 110:2049–2066



www.manaraa.com

morphology and an adequate particle size distribution,
which favors powder spreading and flowability during
the SLS process. Carbon fibers present in the PA12 ma-
trix affect the powder spreading over the platform due to
their high aspect ratio, causing voids in the packed pow-
der, leading to porosity after SLS consolidation [11].

From laser sintering perspective, the very short laser ma-
terial interaction during SLS leads to the primary consol-
idation mechanism of PA12-CF powders via particle rear-
rangement phase during liquid phase sintering (LPS),
where the liquid phase (PA12) flows around the solid
particles (CF) via capillary forces [29].

Fig. 6 Response surfaces for yield strength and nominal strain at break. a
Yield strength as a function of laser speed and laser power at 0.4 mm scan
line spacing. b Elastic modulus as a function of laser speed and scan line
spacing at 35 W laser power. c Nominal strain at break as a function of

laser speed and laser power at 0.4 mm scan line spacing. dNominal strain
at break as a function of laser speed and scan line spacing at 35 W laser
power
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Laser sintering parameters significantly affect the rear-
rangement phase during LPS and resulting density. The
Gaussian process model trained could capture the behavior
observed over the individual laser sintering parameters. For
instance, higher laser speed decreases the laser material inter-
action time, reducing the time liquid molten PA12 has to sur-
round CF particles, decreasing the rearrangement phase kinet-
ic force, and leading to lower density. At the same time, this
can be compensated with lower scan line spacing and higher
overlap degree so that the number of total exposures the same
area has is increased, improving sintering dynamics. An in-
crease in laser power to keep the same energy level delivered
to the powder bed, but such an approach may not be the most
effective due to the lower sensibility density has over laser
power. The model also shows the complexity of the individual
parameters to achieve optimal density response. The simple
decrease of laser speed and scan line spacing or increase in
laser power leads to a reduction in density as more energy

delivered to the powder bed leads to volume increase due to
the consolidation of neighboring particles not scanned by the
laser beam as well as polymer degradation.

The mechanical behavior of polymer composites depends
on the homogeneity of filler dispersion on the matrix and the
adhesion between filler and polymer matrix. The consolida-
tion mechanism by liquid phase sintering mechanism plays an
important role in the homogeneity of filler dispersion and
adhesion at the matrix-filler interface [30]. The GP model
described well the elastic modulus of PA12-CF. At low laser
power and high laser speed or high scan line spacing, liquid
phase sintering is reduced due to the low liquid content
flowing around the filler solid particles. The poor rearrange-
ment phase during LPS leads to weak adhesion between filler
and matrix and lower elastic properties.

The GP model also captures the complex trade-offs
existing between the individual laser sintering parameters to
achieve a combination of low porosity and adequate adhesion

Fig. 7 Sensitivity to SLS process parameters for a density, b elastic modulus, c yield strength, and d nominal strain at break
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between carbon filler and PA12 matrix. The specific laser
sintering parameters necessary to achieve this goal cover a
wide area of the design space. For instance, the individual
use of high laser speed promotes poor sintering conditions
as there is no time for effective liquid formation and presence
for a prolonged time. However, the use of high laser speed and
low scan line spacing reduces the exposure time while in-
creases the number of laser exposures, providing more time
for the rearrangement phase during liquid phase sintering to
occur. The use of low laser power associated with a low laser
speed achieves a similar behavior. The GP model describes
adequately the decrease in mechanical properties towards very
low laser speed and scan line spacing or low laser speed and
high laser power, resulting in a high-energy density applied.
The decrease in elastic modulus and yield strength at these
sintering parameters is associated with a reduction in PA12
crystal fraction present after consolidation [31, 32]. The im-
pact is more significant on elastic properties compared to plas-
tic properties, as observed from the smoother surface topology
of yield strength and nominal strain at break compared to
elastic modulus response variables. Nominal strain at break
initially improves from the higher energy laser sintering pa-
rameters applied, as the plastic strain on PA12-CF results from
the deformation of amorphous chains located in the PA12
matrix. At very high-energy densities, polymer degradation
is the governing mechanism responsible for the reduction in
mechanical properties, as already observed by other authors
when processing PA12-CF [10].

3.2.3 Normalized manufacturing time

Figure 8a shows the normalized manufacturing time response
surface as a function of laser power and laser speed at 0.4 mm
scan line spacing. Normalized manufacturing time varies al-
most linearly with laser speed, with the lowest values at high
laser speed and increasing in the direction of lower laser
speed. This behavior is in agreement with the SLS process,
as the laser speed influences the time required to scan the
powder bed, with higher laser speed requiring less time than
lower laser speed to scan over the same powder bed surface.
However, the reduction in time is not of grand scale, with a
maximum reduction in 3% observed at the highest laser speed
applied. Laser power does not influence significantly normal-
ized manufacturing time.

Normalized manufacturing time over laser speed and scan
line spacing at 35 W laser power are depicted in Fig. 8b. The
model shows a smooth surface with the lowest manufacturing
time of 0.965 at the highest laser speed and scan line spacing,
increasing in the direction towards low laser speed and scan
line spacing. Maximum values of 1.04 are found at the lowest
laser speed and scan line spacing evaluated.

As shown in Fig. 9, scan line spacing has the highest influ-
ence on normalized manufacturing time, closely followed by

laser speed. As expected, normalized manufacturing time is
not influenced by laser power.

3.3 Stochastic optimization through evolutionary
algorithm

After successful learning of the training data via GP, several
multi-objective optimization tasks were conducted using EA.
As the model quality for surface roughness was not adequate,
the optimization tasks involving minimizing surface rough-
ness were not considered, and the optimization was conducted
for mechanical properties, dimensional accuracy, and
manufacturing time (criteria 1, 3, and 6).

3.3.1 Criterion 1—Optimization of manufacturing time
and dimensional accuracy

Criterion 1 seeks the optimization of manufacturing time and
dimensional accuracy while keeping mechanical properties at
acceptable values. In order to perform this task, mechanical
properties were set as hard upper limits, meaning that optimi-
zation solutions that result in mechanical properties lower than
the thresholds set as hard upper limits will be discarded. Yield
strength was set as hard upper bound at 59 MPa, elastic mod-
ulus at 3276 MPa, and nominal strain at break at 4.87%.

Figure 10a depicts the Pareto solutions for Z-direction ac-
curacy and normalized manufacturing time after the optimiza-
tion task with criterion 1. The maximum accuracy achieved is
0.94, while minimum normalized manufacturing time is 0.97.
Two Pareto sets were chosen from all solutions at the Pareto
frontier: Pareto set 1 shows lowest values for normalized
manufacturing time (0.97) and good Z-direction accuracy
around 0.937; Pareto set 2 has slightly better values for Z-
direction accuracy (near 0.94) at the cost of higher normalized
manufacturing time (0.976–0.977). The first Pareto set chosen
a better solution set for the optimization task; nevertheless,
solution set 2 was chosen for comparison as well.

The laser sintering parameters at the Pareto frontier can be
observed in Fig. 10b. Pareto set 1 laser sintering parameters
are clustered at higher laser power are between 42 and 43 W,
high laser speed area between 4300 and 4500 mm/s, and scan
line spacing between 0.43 and 0.44 mm. Pareto solution set 2
gives an entirely different scenario of lower laser power at 33
W, lower laser speed near 2800 mm/s, and very high scan line
spacing at 0.57mm. Pareto set 1 gives better results in terms of
normalized manufacturing time as the laser speed applied is
much higher than Pareto set 2.

3.3.2 Criterion 3—Optimization of dimensional accuracy
and mechanical properties

Multi-objective optimization task with criterion 3 aims the
maximization of dimensional accuracy and mechanical
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properties. All main mechanical properties outputs (elastic
modulus, yield strength, and nominal strain at break) were
maximized as well as dimensional accuracy in all directions.
Normalized manufacturing time was set as hard upper bound
at 0.99.

Figure 11a shows the Pareto frontier for yield strength and
nominal strain at break over Z-direction accuracy. A well-
defined Pareto frontier is observed, and the trade-off solutions
between mechanical properties and dimensional accuracy are
visible. Dimensional accuracy and mechanical properties are
conflicting objective functions, so the choice of parameters

must be carefully observed. To perform the analysis, three
Pareto solution sets were chosen: first Pareto set focused on
high mechanical properties (yield strength above 68 MPa) in
detriment of lower dimensional accuracy (between 0.91 and
0.92); Pareto group 2 allowed slightly lower yield strength
(below 67 MPa) values to improve dimensional accuracy (Z-
direction accuracy between 0.93 and 094); Pareto set 3 fo-
cused on maximum Z-direction accuracy values (above
0.97) at the cost of much lower mechanical properties (yield
strength between 50 and 51 MPa); Pareto set 4 was chosen in
order to maximize nominal strain at break values, which do

Fig. 8 Response surfaces for normalized manufacturing time. a Normalized manufacturing time as a function of laser power speed 0.4 mm scan line
spacing. b Normalized manufacturing time as a function of laser speed and scan line spacing at 35 W laser power

Fig. 9 Sensitivity to SLS process
parameters for normalized
manufacturing time
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not show a direct correlation with yield strength depending on
the value range.

Laser speed, scan line spacing, and laser power at the
Pareto frontier for criterion 3 are depicted in Fig. 11b. Each
Pareto set leads to a different laser sintering parameter
combination. At Pareto set 1, laser scan speed solutions
are concentrated near 3000 mm/s at a laser power between
41 and 43 W and scan line spacing between 0.56 and 0.6
mm. Pareto set 2 results in similar parameters except that
laser speed is higher (above 3300 mm/s) and lower scan

line spacing (between 0.55 and 0.57 mm). Pareto set 3 is
are grouped in two regions: laser power between 28 and 30
W, laser speed between 4300 and 4600 mm/s and scan line
spacing between 0.38 and 0.4 mm; second region occurs at
high laser power above 41 W, lower laser speed between
4150 and 4450 mm/s and scan line spacing ranging from
0.5 to 0.52 mm. At last, Pareto set 4 values are concentrat-
ed at laser power higher than 40 W, a narrow laser speed
area near 4500 mm/s, and scan line spacing between 0.37
and 0.4 mm.

Fig. 11 Pareto solutions for optimization taskwith criterion 3. a Pareto frontier for optimization criterion 3. bLaser sintering parameters at Pareto frontier
for optimization criterion 3

Fig. 10 Pareto solutions for optimization taskwith criterion 1. a Pareto frontier for optimization criterion 1. bLaser sintering parameters at Pareto frontier
for optimization criterion 1
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A closer look at the optimized laser sintering parameters
reveals that laser speed values are always attained intermedi-
ate to a high level. This result is in agreement with the re-
sponse surfaces obtained from the GP model, which showed
a decrease in mechanical properties at too low laser speed.
There is a tendency towards higher laser power whenmechan-
ical strength is desired in the Pareto frontier. This tendency
was also observed and predicted by the Gaussian model, al-
though high yield strength was also achieved at lower power.
Low scan line spacing seems decisive when higher nominal
strain at break is desired, whereas higher scan line spacing is
higher when yield strength is the focus. The overlapping de-
gree plays an important role here by improving the number of
laser exposures of the previously scanned area of the powder
bed.

3.3.3 Criterion 6—Optimization of normalized manufacturing
time and mechanical properties

The target of the optimization task with criterion 6 is to max-
imize mechanical properties and normalized manufacturing
time. In order to perform the task, also reaching adequate
values of dimensional accuracy and surface roughness, Y-
and Z-direction accuracy were set as hard lower limits at
0.98 and 0.88, respectively.

Figure 12a shows the Pareto frontier after EA optimi-
zation for criterion 6. The curve shows a well-defined
Pareto frontier with clear trade-off values. Three Pareto
sets were evaluated: Pareto set 1 is focused on mechanical
properties optimization with normalized manufacturing
time below 0.98; Pareto set 2 is similar to Pareto set 1
but has lower yield strength target values (between 64 and

66.6 MPa) with highest nominal strain at break and lower
range for normalized manufacturing time; Pareto set 3 has
much softer values of yield strength (44–46 MPa) and
nominal strain at break (3.54 %) with the benefit of lower
normalized manufacturing time (0.965).

Laser sintering parameters at Pareto frontier are shown
in Fig. 12b. A different set of SLS parameters is achieved
depending on the specific trade-off desired. Pareto set 1
aims highest yield strength, resulting in optimized param-
eters clustered at high laser power (43 W), intermediate
laser speed between 2500 and 2800 mm/s, and high scan
line spacing at 0.6 mm. Pareto set 2 is focused on achiev-
ing the highest nominal strain, leading to higher laser speed
values between 4000 and 4500 mm/s and lower scan line
spacing between 0.35 and 0.41 mm while keeping the same
laser power level near 43 W. Pareto set 3 seeks lowest
normalized manufacturing time. Therefore, highest laser
speed is desired (5000 mm/s) combined to higher scan line
spacing at 0.5 mm and high laser power. Comparing Pareto
sets 2 and 3, it can be observed that a small increase in laser
speed and scan line spacing promotes a significant reduc-
tion in mechanical properties (30% reduction in yield
strength and 40% in strain at break) at the cost of a small
decrease in normalized manufacturing time (1%).

4 Conclusions

This work investigated the influence of the individual laser
sintering parameters on the mechanical and dimensional prop-
erties of SLS produced PA12-CF samples. For the first time,
response surface modeling via Gaussian process (GP)–

Fig. 12 Pareto solutions for optimization taskwith criterion 6. a Pareto frontier for optimization criterion 6. bLaser sintering parameters at Pareto frontier
for optimization criterion 6
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supervised learning was successfully employed, covering a
wide range of laser sintering parameters and providing more
in-depth information on the influence of individual laser
sintering parameters over important quality variables. At last,
multi-objective stochastic optimization employing evolution-
ary algorithm (EA) was deployed for both PA12-CF in differ-
ent criteria scenarios, aiming to understand the behavior of
individual laser sintering parameters when subjected to sever-
al optimization tasks. The following conclusions can be
drawn:

& Excellent model quality (adequate for quantitative assess-
ment) was achieved for the following output variables: Z-
direction accuracy, density, yield strength, nominal strain
at break, elastic modulus, and normalized manufacturing
time.

& Intermediate model quality (adequate for qualitative as-
sessment) was achieved for the following output variables:
density, Y-direction accuracy.

& Response surfaces showed a wide variation of topologies
depending on the response variable, many of which with a
highly non-linear shape. The GP could successfully cap-
ture the non-linear effects and provide detailed informa-
tion on the correlation of laser sintering parameters and
output variables, which can be used for both prediction
and optimization of process variables.

& The relevance of individual laser sintering parameters de-
pends strongly on the related response variable evaluated.
There is no individual parameter with the highest overall
relevance that could be ranked, although laser power had
the lowest significance among the parameters evaluated.

& Laser sintering parameters at optimized Pareto frontier
vary to a great extent depending on the trade-off objective
desired and the criteria used for optimization.

& Optimization of manufacturing time and dimensional ac-
curacy led to Pareto sets clustered at high laser power,
high laser speed, and medium to high scan line spacing
or intermediate laser power and laser speed and high scan
line spacing.

& Optimization of mechanical properties and dimensional
accuracy led to optimized laser sintering parameters clus-
tered mainly at high laser power and intermediate to high
laser speed. Scan line spacing varied from intermediate to
high values. A clear difference was observed in Pareto sets
maximizing strain at break or yield strength.

& Optimization of mechanical properties and manufacturing
time resulted in Pareto solutions clustered at high laser
power and intermediate to high values for laser speed
and scan line spacing values, depending on the desired
trade-off solution.
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